If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+48t=32
We move all terms to the left:
-16t^2+48t-(32)=0
a = -16; b = 48; c = -32;
Δ = b2-4ac
Δ = 482-4·(-16)·(-32)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-16}{2*-16}=\frac{-64}{-32} =+2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+16}{2*-16}=\frac{-32}{-32} =1 $
| Y+45-2y=7 | | X÷4+16=2x+9 | | 5=k-77/3 | | 4x+30=6x+1 | | -12=6x+8-4x | | 8z=18.4 | | 3x^2+120x+32=0 | | -1-6x=-11-7x | | c/6+57=64 | | 2m−6=4 | | -7x=-6+8 | | 9z+7-6z=79-6z | | 32x+8=35x | | 3*(2x+1)=4x-3 | | -2x+5=3x=20 | | 1/3x+4=84 | | 5x+(-2x+3)=4 | | -16+4s=0 | | 5x-7x+6=-2x(x-3) | | 1-(-2y)=5 | | 5x=5=x+15 | | 3(x+1)=32 | | 7x-7=14+4x | | -12x+4+3x+5=90 | | 9x-8=10x | | 142+19a=180 | | 289=4(4+8x)+7x | | 49=9(v-2) | | 5-y=7-3 | | q-63/7=5 | | 152+19a=180 | | 48+6w=180 |